Abstract and Applied Analysis
Volume 2013 (2013), Article ID 359675, 7 pages
http://dx.doi.org/10.1155/2013/359675
Research Article

Error Modeling, Calibration, and Nonlinear Interpolation Compensation Method of Ring Laser Gyroscope Inertial Navigation System

1Fundamental Science on Novel Inertial Instrument & Navigation System Technology Laboratory, School of Instrumentation Science & Optoelectronics Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
2Science and Technology on Inertial Laboratory, Beijing 100191, China
3School of Instrumentation Science & Engineering, Southeast University, Nanjing 211100, China

Received 25 November 2012; Revised 30 January 2013; Accepted 18 February 2013

Academic Editor: Chuandong Li

Copyright © 2013 Jianli Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In order to improve the precision of Strapdown Inertial Navigation System (SINS) and reduce the complexity of the traditional calibration method, a novel calibration and compensation scheme is proposed. An optimization calibration method with four-direction rotations is designed to calculate all error coefficients of Ring Laser Gyroscope (RLG) SINS in a series of constant temperatures. According to the actual working environment, the temperature errors of RLG SINS are compensated by a nonlinear interpolation compensation algorithm. The experimental results show that the inertial navigation errors of the proposed method are reduced.