Copyright © 2013 Natalia Irishina and Aurora Torrente. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Microwave tomographic imaging is an inexpensive, noninvasive
modality of media dielectric properties reconstruction which can
be utilized as a screening method in clinical applications such
as breast cancer and brain stroke detection. For breast cancer
detection, the iterative algorithm of structural inversion with
level sets provides well-defined boundaries and incorporates an
intrinsic regularization, which permits to discover small
lesions. However, in case of brain lesion, the inverse problem is
much more difficult due to the skull, which causes low
microwave penetration and highly noisy data. In addition,
cerebral liquid has dielectric properties similar to those of
blood, which makes the inversion more complicated. Nevertheless,
the contrast in the conductivity and permittivity values in this
situation is significant due to blood high dielectric values
compared to those of surrounding grey and white matter tissues.
We show that using brain MRI images as prior information about
brain's configuration, along with known brain dielectric
properties, and the intrinsic regularization by structural
inversion, allows successful and rapid stroke detection even in
difficult cases. The method has been applied to 2D slices created
from a database of 3D real MRI phantom images to effectively
detect lesions larger than 2.5 × 10−2 m diameter.