School of Mathematical Sciences, Guangxi Teachers Education University, Nanning 530023, China
Copyright © 2013 Zaitang Huang and Weihua Lei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The main purpose is to investigate both deterministic and stochastic bifurcations of the catalytic CO oxidation. Firstly, super- and subcritical bifurcations are determined by the signs of the Poincaré-Lyapunov coefficients of the center manifold scalar bifurcation equations. Secondly, we explore the stochastic bifurcation of the catalytic CO oxidation on Ir(111) surfaces with multiple delays according to the qualitative changes in the invariant measure, the Lyapunov exponent, and the stationary probability density of system response. Some new criteria ensuring stability and stochastic bifurcation are obtained.