Copyright © 2009 Ruyun Ma and Huili Ma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Let T∈ℕ be an integer with T>2, and let 𝕋:={1,…,T}. We study the existence of solutions of nonlinear discrete problems Δ2u(t−1)+λka(t)u(t)+g(t,u(t))=h(t), t∈𝕋, u(0)=u(T), u(1)=u(T+1), where a,h:𝕋→ℝ with a>0, λk is the kth eigenvalue of the corresponding linear eigenvalue problem.