Academic Editor: Gaston M. N'Guérékata
Copyright © 2010 Jie Gao et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The structure of eigenvalues of −y″+q(x)y=λy, y(0)=0, and y(1)=∑k=1mαky(ηk), will be studied, where q∈L1([0,1],ℝ), α=(αk)∈ℝm, and 0<η1<⋯<ηm<1. Due to the nonsymmetry of the problem, this equation may admit complex eigenvalues. In this paper, a complete structure of all complex eigenvalues of this equation will be obtained. In particular, it is proved that this equation has always a sequence of real eigenvalues tending to +∞. Moreover, there exists some constant Aq>0 depending on q, such that when α satisfies ‖α‖≤Aq, all eigenvalues of this equation are necessarily real.