Advances in Numerical Analysis
Volume 2013 (2013), Article ID 189045, 9 pages
http://dx.doi.org/10.1155/2013/189045
Research Article

Mixed Finite Element Methods for the Poisson Equation Using Biorthogonal and Quasi-Biorthogonal Systems

School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia

Received 10 October 2012; Revised 20 February 2013; Accepted 25 February 2013

Academic Editor: Norbert Heuer

Copyright © 2013 Bishnu P. Lamichhane. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We introduce two three-field mixed formulations for the Poisson equation and propose finite element methods for their approximation. Both mixed formulations are obtained by introducing a weak equation for the gradient of the solution by means of a Lagrange multiplier space. Two efficient numerical schemes are proposed based on using a pair of bases for the gradient of the solution and the Lagrange multiplier space forming biorthogonal and quasi-biorthogonal systems, respectively. We also establish an optimal a priori error estimate for both finite element approximations.