Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 192618, 9 pages
http://dx.doi.org/10.1155/2012/192618
Research Article

A Finite Element Study of Micropipette Aspiration of Single Cells: Effect of Compressibility

Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland

Received 27 September 2011; Accepted 31 October 2011

Academic Editor: Vikas Rai

Copyright © 2012 Amirhossein Jafari Bidhendi and Rami K. Korhonen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Micropipette aspiration (MA) technique has been widely used to measure the viscoelastic properties of different cell types. Cells experience nonlinear large deformations during the aspiration procedure. Neo-Hookean viscohyperelastic (NHVH) incompressible and compressible models were used to simulate the creep behavior of cells in MA, particularly accounting for the effect of compressibility, bulk relaxation, and hardening phenomena under large strain. In order to find optimal material parameters, the models were fitted to the experimental data available for mesenchymal stem cells. Finally, through Neo-Hookean porohyperelastic (NHPH) material model for the cell, the influence of fluid flow on the aspiration length of the cell was studied. Based on the results, we suggest that the compressibility and bulk relaxation/fluid flow play a significant role in the deformation behavior of single cells and should be taken into account in the analysis of the mechanics of cells.