Copyright © 2012 A. Eleuteri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The heart rate variability (HRV) signal derived from the ECG is a beat-to-beat record of RR intervals and is, as a time series, irregularly sampled. It is common engineering practice to resample this record, typically at 4 Hz, onto a regular time axis for analysis in advance of time domain filtering and spectral analysis based on the DFT. However, it is recognised that resampling introduces noise and frequency bias. The present work describes the implementation of a time-varying filter using a smoothing priors approach based on a Gaussian process model, which does not require data to be regular in time. Its output is directly compatible with the Lomb-Scargle algorithm for power density estimation. A web-based demonstration is available over the Internet for exemplar data. The MATLAB (MathWorks Inc.) code can be downloaded as open source.