Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 767469, 8 pages
http://dx.doi.org/10.1155/2012/767469
Research Article

Reliability of Semiautomated Computational Methods for Estimating Tibiofemoral Contact Stress in the Multicenter Osteoarthritis Study

1Department of Orthopaedics and Rehabilitation, The University of Iowa, Iowa City, IA 52242-1088, USA
2Department of Biomedical Engineering, The University of Iowa, 1402 Seamans Center, Iowa City, IA 52242, USA
3Department of Epidemiology, The University of Iowa, 2181 Westlawn, Iowa City, IA 52242-1088, USA
4Department of Radiology, The University of Iowa, Iowa City, IA 52242-1088, USA
5Department of Epidemiology and Biostatistics, University of California, San Francisco, 185 Berry Street, Lobby 5, Suite 5700, San Francisco, CA 94107-1762, USA
6Department of Radiology, University of California, San Francisco, 185 Berry Street, Lobby 5, Suite 5700, San Francisco, CA 94107-1762, USA

Received 8 July 2012; Revised 28 August 2012; Accepted 11 September 2012

Academic Editor: Leping Li

Copyright © 2012 Donald D. Anderson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Recent findings suggest that contact stress is a potent predictor of subsequent symptomatic osteoarthritis development in the knee. However, much larger numbers of knees (likely on the order of hundreds, if not thousands) need to be reliably analyzed to achieve the statistical power necessary to clarify this relationship. This study assessed the reliability of new semiautomated computational methods for estimating contact stress in knees from large population-based cohorts. Ten knees of subjects from the Multicenter Osteoarthritis Study were included. Bone surfaces were manually segmented from sequential 1.0 Tesla magnetic resonance imaging slices by three individuals on two nonconsecutive days. Four individuals then registered the resulting bone surfaces to corresponding bone edges on weight-bearing radiographs, using a semi-automated algorithm. Discrete element analysis methods were used to estimate contact stress distributions for each knee. Segmentation and registration reliabilities (day-to-day and interrater) for peak and mean medial and lateral tibiofemoral contact stress were assessed with Shrout-Fleiss intraclass correlation coefficients (ICCs). The segmentation and registration steps of the modeling approach were found to have excellent day-to-day (ICC 0.93–0.99) and good inter-rater reliability (0.84–0.97). This approach for estimating compartment-specific tibiofemoral contact stress appears to be sufficiently reliable for use in large population-based cohorts.