Copyright © 2009 You-Hui Su and Wan-Tong Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
This paper is concerned with the second-order Hamiltonian system on time scales 𝕋 of the form uΔΔ(ρ(t))+μb(t)|u(t)|μ−2u(t)+∇¯H(t,u(t))=0, Δ-a.e. t∈[0,T]𝕋 , u(0)−u(T)=uΔ(ρ(0))−uΔ(ρ(T))=0, where 0,T∈𝕋. By using the minimax methods in critical theory, an existence theorem of periodic solution for the above system is established. As an application, an example is given to illustrate the result. This is probably the first time the existence of periodic solutions for second-order Hamiltonian system on time scales has been studied by critical theory.