Copyright © 2009 Jun Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The original Hopfield neural networks model is adapted so that the weights of the resulting network are time varying. In this paper, the Discrete Hopfield neural networks with weight function matrix (DHNNWFM) the weight changes with time, are considered, and the stability of DHNNWFM is analyzed. Combined with the Lyapunov function, we obtain some important results that if weight function matrix (WFM) is weakly (or strongly) nonnegative definite function matrix, the DHNNWFM will converge to a stable state in serial (or parallel) model, and if WFM consisted of strongly nonnegative definite function matrix and column (or row) diagonally dominant function matrix, DHNNWFM will converge to a stable state in parallel model.