Discrete Dynamics in Nature and Society
Volume 2012 (2012), Article ID 431512, 12 pages
http://dx.doi.org/10.1155/2012/431512
Research Article

Forecasting Air Passenger Traffic by Support Vector Machines with Ensemble Empirical Mode Decomposition and Slope-Based Method

Department of Management Science and Information System, School of Management, Huazhong University of Science and Technology, Wuhan 430074, China

Received 28 August 2012; Accepted 3 October 2012

Academic Editor: Carlo Piccardi

Copyright © 2012 Yukun Bao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

With regard to the nonlinearity and irregularity along with implicit seasonality and trend in the context of air passenger traffic forecasting, this study proposes an ensemble empirical mode decomposition (EEMD) based support vector machines (SVMs) modeling framework incorporating a slope-based method to restrain the end effect issue occurring during the shifting process of EEMD, which is abbreviated as EEMD-Slope-SVMs. Real monthly air passenger traffic series including six selected airlines in USA and UK were collected to test the effectiveness of the proposed approach. Empirical results demonstrate that the proposed decomposition and ensemble modeling framework outperform the selected counterparts such as single SVMs (straightforward application of SVMs), Holt-Winters, and ARIMA in terms of RMSE, MAPE, GMRAE, and DS. Additional evidence is also shown to highlight the improved performance while compared with EEMD-SVM model not restraining the end effect.