Copyright © 2013 Xiaoqin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The reaction-diffusion Holling-Tanner prey-predator model considering the Allee effect on predator, under zero-flux boundary conditions, is discussed. Some properties of the solutions, such as dissipation and persistence, are obtained. Local and global stability of the positive equilibrium and Turing instability are studied. With the help of the numerical simulations, the rich Turing patterns, including holes, stripes, and spots patterns, are obtained.