International Journal of Mathematics and Mathematical Sciences
Volume 2007 (2007), Article ID 25704, 17 pages
doi:10.1155/2007/25704
Research Article
Matrix Transformations and Quasi-Newton Methods
1Laboratoire Mathématiques Appliquées du Havre (LMAH) Université du Havre, IUT Le Havre, BP 4006, Le Havre 76610, France
2Département de Mathématiques et d'Informatique, ENSET d'Oran, BP 1523, Oran 31000, Algeria
3Institut Supérieur d'Études Logistique (ISEL), Université du Havre, Quai Frissard, BP 1137, Le Havre 76063, France
Received 23 December 2006; Accepted 18 March 2007
Academic Editor: Narendra K. Govil
Copyright © 2007 Boubakeur Benahmed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We first recall some properties of infinite tridiagonal
matrices considered as matrix transformations in sequence spaces of the forms
sξ, sξ∘, sξ(c), or lp(ξ). Then, we give some results on the finite section
method for approximating a solution of an infinite linear system. Finally,
using a quasi-Newton method, we construct a sequence that converges fast to a
solution of an infinite linear system.