Copyright © 2009 Saeid Alikhani and Yee-Hock Peng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Let G=(V,E) be a simple graph. A set S⊆V is a dominating set of G, if every vertex in V\S is adjacent to at least one vertex in S. Let 𝒫ni be the family of all dominating sets of a path Pn with cardinality i, and let d(Pn,j)=|𝒫nj|. In this paper, we construct 𝒫ni, and obtain a recursive formula for d(Pn,i). Using this recursive formula, we consider the polynomial D(Pn,x)=∑i=⌈n/3⌉nd(Pn,i)xi, which we call domination polynomial of paths and obtain some properties of this polynomial.