Department of Mathematics and Statistics, University of Calgary, Calgary, AB, T2N 1N4, Canada
Copyright © 2009 R. A. Mollin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We completely classify all polynomials of type (x2+x−(Δ−1))/4 which are prime or 1 for a range of consecutive integers x≥0, called Rabinowitsch polynomials, where Δ≡1(mod4) with Δ>1 square-free. This corrects, extends, and completes the results by Byeon and Stark (2002, 2003) via
the use of an updated version of what Andrew Granville has dubbed
the Rabinowitsch-Mollin-Williams Theorem—by Granville and Mollin (2000) and Mollin (1996). Furthermore, we verify conjectures of this author and pose more based
on the new data.