Copyright © 2009 Sh. Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We first obtain the relations of local univalency, convexity, and linear connectedness between analytic functions and their corresponding affine harmonic mappings. In addition, the paper deals with the regions of variability of values of affine harmonic and biharmonic mappings. The regions (their boundaries) are determined explicitly and the proofs rely on Schwarz lemma or subordination.