Division of Mechanics, Department of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zographou, 157 73 Athens, Greece
Academic Editor: N. Govil
Copyright © 2011 Dimitrios E. Panayotounakos and Theodoros I. Zarmpoutis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We provide a new mathematical technique leading to the construction of the exact parametric or closed form solutions of the classes of Abel's nonlinear differential equations (ODEs) of the first kind. These solutions are given implicitly in terms of Bessel functions of the first and the second kind (Neumann functions), as well as of the free member of the considered ODE; the parameter being introduced furnishes the order of the above Bessel functions and defines also the desired solutions of the considered ODE as one-parameter family of surfaces. The nonlinear initial or boundary value problems are also investigated. Finally, introducing a relative mathematical methodology, we construct the exact parametric or closed form solutions for several degenerate Abel's equation of the first kind.