Copyright © 2011 Afif Ben Amar et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We establish some versions of fixed-point theorem in a Frechet topological vector space . The main result is that every map (where is a continuous map and is a continuous linear weakly compact operator) from a closed convex subset of a Frechet topological vector space having the Dunford-Pettis property into itself has fixed-point. Based on this result, we present two versions of the Krasnoselskii fixed-point theorem. Our first result extend the well-known Krasnoselskii's fixed-point theorem for U-contractions and weakly compact mappings, while the second one, by assuming that the family where and a compact is nonlinear equicontractive, we give a fixed-point theorem for the operator of the form .