Copyright © 2011 Robert F. Allen et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Let be the space of complex-valued functions on the set of vertices of an infinite tree rooted at such that the difference of the values of at neighboring vertices remains bounded throughout the tree, and let be the set of functions such that , where is the distance between and and is the neighbor of closest to . In this paper, we characterize the bounded and the compact multiplication operators between and and provide operator norm and essential norm estimates. Furthermore, we characterize the bounded and compact multiplication operators between and the space of bounded functions on and determine their operator norm and their essential norm. We establish that there are no isometries among the multiplication operators between these spaces.