Copyright © 2011 Edward P. Krisner and William C. Troy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We investigate the existence and asymptotic behavior of positive, radially symmetric singular solutions of , . We focus on the parameter regime and where the equation has the closed form, positive singular solution , . Our advance is to develop a technique to efficiently classify the behavior of solutions which are positive on a maximal positive interval . Our approach is to transform the nonautonomous equation into an autonomous ODE. This reduces the problem to analyzing the behavior of solutions in the phase plane of the autonomous equation. We then show how specific solutions of the autonomous equation give rise to the existence of several new families of singular solutions of the equation. Specifically, we prove the existence of a family of singular solutions which exist on the entire interval , and which satisfy for all . An important open problem for the nonautonomous equation is presented. Its solution would lead to the existence of a new family of “super singular” solutions which lie entirely above .