KIAM, Miusskaya Sq. 4, Moscow 125047, Russia
Copyright © 2013 P. A. Krutitskii. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We study the Dirichlet problem for the equation in the exterior of nonclosed Lipschitz surfaces in . The Dirichlet problem for the Laplace equation is a particular case of our problem. Theorems on existence and
uniqueness of a weak solution of the problem are proved. The integral representation for a solution is obtained in the form of single-layer potential. The density in the potential is defined as a solution of the operator (integral) equation, which is uniquely solvable.