Journal of Applied Mathematics
Volume 2012 (2012), Article ID 567208, 16 pages
http://dx.doi.org/10.1155/2012/567208
Research Article

Simulation of Magnetorheological Fluids Based on Lattice Boltzmann Method with Double Meshes

School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China

Received 16 May 2012; Accepted 27 July 2012

Academic Editor: Subhas Abel

Copyright © 2012 Xinhua Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In order to study the rheological characteristics of magnetorheological fluids, a novel approach based on the two-component Lattice Boltzmann method with double meshes was proposed, and the micro-scale structures of magnetorheological fluids in different strength magnetic fields were simulated. The framework composed of three steps for the simulation of magnetorheological fluids was addressed, and the double meshes method was elaborated. Moreover, the various internal and external forces acting on the magnetic particles were analyzed and calculated. The two-component Lattice Boltzmann model was set up, and the flowchart for the simulation of magnetorheological fluids based on the two-component Lattice Boltzmann method with double meshes was designed. Finally, a physics experiment was carried out, and the simulation examples were provided. The comparison results indicated that the proposed approach was feasible, efficient, and outperforming others.