Department of Mathematics, North University of China, Shanxi, Taiyuan 030051, China
Copyright © 2012 Yakui Xue and Xiaohong Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Because the latent period and the infectious period of tuberculosis (TB) are very long, it is not reasonable to consider the time as constant. So this paper formulates a mathematical model that divides the latent period and the infectious period into n-stages. For a general n-stage stage progression (SP) model with bilinear incidence, we analyze its dynamic behavior. First, we give the basic reproduction number . Moreover, if , the disease-free equilibrium is globally asymptotically stable and the disease always dies out. If , the unique endemic equilibrium is globally asymptotically stable and the disease persists at the endemic equilibrium.