Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
Copyright © 2012 S. P. Anusha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Travel time estimation in urban arterials is challenging compared to freeways and multilane highways. This becomes more complex under Indian conditions due to the additional issues related to heterogeneity, lack of lane discipline, and difficulties in data availability. The fact that most of the urban arterials in India do not employ automatic detectors demands the need for an effective, yet less data intensive way of estimating travel time. An attempt has been made in this direction to estimate total travel time in an urban road stretch using the location based flow data and sparse travel time data obtained using GPS equipped probe vehicles. Three approaches are presented and compared in this study: (1) a combination of input-output analysis for mid-blocks and Highway Capacity Manual (HCM) based delay calculation at signals named as base method, (2) data fusion approach which employs Kalman filtering technique (nonhybrid method), and (3) a hybrid data fusion HCM (hybrid DF-HCM) method. Data collected from a stretch of roadway in Chennai, India was used for the corroboration. Simulated data were also used for further validation. The results showed that when data quality is assured (simulated data) the base method performs better. However, in real field situations, hybrid DF-HCM method outperformed the other methods.