Copyright © 2012 Dohyun Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We propose a new mathematical framework for estimating pulse arrival time (PAT). Existing methods of estimating PAT rely on local characteristic points or global parametric models: local characteristic point methods detect points such as foot points, max points, or max slope points, while global parametric methods fit a parametric form to the anacrotic phase of pulse signals. Each approach has its strengths and weaknesses; we take advantage of the favorable properties of both approaches in our method. To be more precise, we transform continuous pulse signals into scalar timing codes through three consecutive transformations, the last of which is a linear transformation. By training the linear transformation method on a subset of data, the proposed method yields results that are robust to noise. We apply this method to real photoplethysmography (PPG) signals and analyze the agreement between our results and those obtained using a conventional approach.