Copyright © 2012 R. J. Moitsheki and M. D. Mhlongo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We consider the one-dimensional steady fin problem with the Dirichlet boundary condition at one end and the Neumann boundary condition at the other. Both the thermal conductivity and the heat transfer coefficient are given as arbitrary functions of temperature. We perform preliminary group classification to determine forms of the arbitrary functions appearing in the considered equation for which the principal Lie algebra is extended. Some invariant solutions are constructed. The effects of thermogeometric fin parameter and the exponent on temperature are studied. Also, the fin efficiency is analyzed.