Journal of Applied Mathematics
Volume 2012 (2012), Article ID 769132, 25 pages
http://dx.doi.org/10.1155/2012/769132
Research Article

Analytical Solutions for Corrosion-Induced Cohesive Concrete Cracking

1School of Engineering, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
2College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

Received 8 July 2011; Revised 16 September 2011; Accepted 30 September 2011

Academic Editor: Wolfgang Schmidt

Copyright © 2012 Hua-Peng Chen and Nan Xiao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The paper presents a new analytical model to study the evolution of radial cracking around a corroding steel reinforcement bar embedded in concrete. The concrete cover for the corroding rebar is modelled as a thick-walled cylinder subject to axisymmetrical displacement constraint at the internal boundary generated by expansive corrosion products. A bilinear softening curve reflecting realistic concrete property, together with the crack band theory for concrete fracture, is applied to model the residual tensile stress in the cracked concrete. A governing equation for directly solving the crack width in cover concrete is established for the proposed analytical model. Closed-form solutions for crack width are then obtained at various stages during the evolution of cracking in cover concrete. The propagation of crack front with corrosion progress is studied, and the time to cracking on concrete cover surface is predicted. Mechanical parameters of the model including residual tensile strength, reduced tensile stiffness, and radial pressure at the bond interface are investigated during the evolution of cover concrete cracking. Finally, the analytical predictions are examined by comparing with the published experimental data, and mechanical parameters are analysed with the progress of reinforcement corrosion and through the concrete cover.