Copyright © 2012 G. Chiaselotti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Let and be two integers such that ; we denote by the minimum [maximum] number of the nonnegative partial sums of a sum , where are real numbers arbitrarily chosen in such a way that of them are nonnegative and the remaining are negative. We study the following two problems: which are the values of and for each and , ? if is an integer such that , can we find real numbers , such that of them are nonnegative and the remaining are negative with , such that the number of the nonnegative sums formed from these numbers is exactly ?