Department of Mathematics & Statistics, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
Copyright © 2012 Nasser-Eddine Tatar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
A wave equation of the Kirchhoff type with several nonlinearities is stabilized by a viscoelastic damping. We consider the case of nonconstant (and unbounded) coefficients. This is a nondissipative case, and as a consequence the nonlinear terms cannot be estimated in the usual manner by the initial energy. We suggest a way to get around this difficulty. It is proved that if the solution enters a certain region, which we determine, then it will be attracted exponentially by the equilibrium.