Institute of Mathematics Statistics and Physics, Federal University of Rio Grande, Avenida Italia km 8, 96201-900 Rio Grande, RS, Brazil
Copyright © 2013 A. De Cezaro. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We investigate a level-set-type method for solving ill-posed problems, with the assumption that the solutions are piecewise, but not necessarily constant functions with unknown level sets and unknown level values. In order to get stable approximate solutions of the inverse problem, we propose a Tikhonov-type regularization approach coupled with a level-set framework. We prove the existence of generalized minimizers for the Tikhonov functional. Moreover, we prove convergence and stability for regularized solutions with respect to the noise level, characterizing the level-set approach as a regularization method for inverse problems. We also show the applicability of the proposed level-set method in some interesting inverse problems arising in elliptic PDE models.