Journal of Applied Mathematics
Volume 2013 (2013), Article ID 158538, 14 pages
http://dx.doi.org/10.1155/2013/158538
Research Article

Three New Stochastic Local Search Metaheuristics for the Annual Crop Planning Problem Based on a New Irrigation Scheme

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, University Road, Westville, Private Bag X 54001, Durban 4000, South Africa

Received 6 February 2013; Accepted 19 April 2013

Academic Editor: Sabri Arik

Copyright © 2013 Sivashan Chetty and Aderemi Oluyinka Adewumi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Annual Crop Planning (ACP) is an NP-hard-type optimization problem in agricultural planning. It involves finding optimal solutions concerning the seasonal allocations of a limited amount of agricultural land amongst the various competing crops that are required to be grown on it. This study investigates the effectiveness of employing three new local search (LS) metaheuristic techniques in determining solutions to an ACP problem at a new Irrigation Scheme. These three new LS metaheuristic techniques are the Best Performance Algorithm (BPA), Iterative Best Performance Algorithm (IBPA), and the Largest Absolute Difference Algorithm (LADA). The solutions determined by these LS metaheuristic techniques are compared against the solutions of two other well-known LS metaheuristic techniques in the literature. These techniques are Tabu Search (TS) and Simulated Annealing (SA). The comparison with TS and SA was to determine the relative merits of the solutions found by BPA, IBPA, and LADA. The results show that TS performed as the overall best. However, LADA determined the best solution that was the most economically feasible.