Journal of Applied Mathematics
Volume 2013 (2013), Article ID 159720, 7 pages
http://dx.doi.org/10.1155/2013/159720
Review Article

A Survey of Results on the Limit -Bernstein Operator

Department of Mathematics, Atilim University, Ankara 06836, Turkey

Received 18 October 2012; Revised 24 January 2013; Accepted 24 January 2013

Academic Editor: Vijay Gupta

Copyright © 2013 Sofiya Ostrovska. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The limit -Bernstein operator emerges naturally as a modification of the Szász-Mirakyan operator related to the Euler distribution, which is used in the -boson theory to describe the energy distribution in a -analogue of the coherent state. At the same time, this operator bears a significant role in the approximation theory as an exemplary model for the study of the convergence of the -operators. Over the past years, the limit -Bernstein operator has been studied widely from different perspectives. It has been shown that is a positive shape-preserving linear operator on with . Its approximation properties, probabilistic interpretation, the behavior of iterates, and the impact on the smoothness of a function have already been examined. In this paper, we present a review of the results on the limit -Bernstein operator related to the approximation theory. A complete bibliography is supplied.