Academic Editor: Theodore E. Simos
Copyright © 2013 Zhen Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
A numerical method for nonlinear fractional-order differential equations with constant or time-varying delay is devised. The order here is an arbitrary positive real number, and the differential operator is with the Caputo definition. The general Adams-Bashforth-Moulton method combined with the linear interpolation method is employed to approximate the delayed fractional-order differential equations. Meanwhile, the detailed error analysis for this algorithm is given. In order to compare with the exact analytical solution, a numerical example is provided to illustrate the effectiveness of the proposed method.