Journal of Applied Mathematics
Volume 2013 (2013), Article ID 285165, 6 pages
http://dx.doi.org/10.1155/2013/285165
Research Article

Stress Analysis of Osteoporotic Lumbar Vertebra Using Finite Element Model with Microscaled Beam-Shell Trabecular-Cortical Structure

1Department of Mechanical Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
2Department of Applied Mathematics, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea

Received 8 March 2013; Accepted 18 April 2013

Academic Editor: Chang-Hwan Im

Copyright © 2013 Yoon Hyuk Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Osteoporosis is a disease in which low bone mass and microarchitectural deterioration of bone tissue lead to enhanced bone fragility and susceptibility to fracture. Due to the complex anatomy of the vertebral body, the difficulties associated with obtaining bones for in vitro experiments, and the limitations on the control of the experimental parameters, finite element models have been developed to analyze the biomechanical properties of the vertebral body. We developed finite element models of the L2 vertebra, which consisted of the endplates, the trabecular lattice, and the cortical shell, for three age-related grades (young, middle, and old) of osteoporosis. The compressive strength and stiffness results revealed that we had developed a valid model that was consistent with the results of previous experimental and computational studies. The von-Mises stress, which was assumed to predict the risk of a burst fracture, was also determined for the three age groups. The results showed that the von-Mises stress was substantially higher under relatively high levels of compressive loading, which suggests that patients with osteoporosis should be cautious of fracture risk even during daily activities.