Copyright © 2013 Lei Ren et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
This paper proposes a three-dimensional mathematical model of the biomechanical interactions between backpack and bearer during load carriage. The model considers both the coupled pack motions, which follow the torso, and also the longitudinal compliance and damping in the backpack suspension. The pack interaction forces and moments, acting on the bearer, are determined from kinematic relationships, equations of motion, and a dynamic pack suspension model. The parameters of the pack suspension model were identified from test data obtained using a load carriage test rig. Output from the load carriage mathematical model has been compared with measurement data during human gait and conclusions drawn with regard to the validity of the proposed approach.