Journal of Applied Mathematics
Volume 2013 (2013), Article ID 396486, 6 pages
http://dx.doi.org/10.1155/2013/396486
Research Article
Analysis of a Model for the Morphological Structure of Renal Arterial Tree: Fractal Structure
1Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara, Avenida Revolución 1500,
CP 44430, Guadalajara, JAL, Mexico
2Universidad Politécnica de San Luis Potosí, Urbano Villalón 500, CP 78363, La Ladrillera, SLP, Mexico
3Instituto de Física UASLP, Universidad Autónoma de San Luis Potosí, Avenida Manuel Nava No. 6., Zona Universitaria, CP 78200, SLP, Mexico
4Laboratorio para Biodinámica y Sistemas Alineales, División de Matemáticas Aplicadas, IPICYT, Apartado Postal 3-90, CP 78231, Tangamanga, SLP, Mexico
Received 7 March 2013; Accepted 12 June 2013
Academic Editor: Kiwoon Kwon
Copyright © 2013 Aurora Espinoza-Valdez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
One of the fields of applied mathematics is related to model analysis. Biomedical systems are suitable candidates for this field because of their importance in life sciences including therapeutics. Here we deal with the analysis of a model recently proposed by Espinoza-Valdez et al. (2010) for the kidney vasculature developed via angiogenesis. The graph theory allows one to model quantitatively a vascular arterial tree of the kidney in sense that (1) the
vertex represents a vessels bifurcation, whereas (2) each edge stands for a vessel including physiological parameters. The analytical model is based
on the two processes of sprouting and splitting angiogeneses, the concentration of the vascular endothelial growth factor (VEGF), and the
experimental data measurements of the rat kidneys. The fractal dimension depends on the probability of sprouting angiogenesis in the development of the arterial vascular tree of the kidney, that is, of the distribution of blood vessels in the morphology generated by the analytical model. The fractal dimension might determine whether a suitable renal vascular structure is capable of performing physiological functions under appropriate conditions. The analysis can describe the complex structures of the development vasculature in kidney.