Journal of Applied Mathematics
Volume 2013 (2013), Article ID 396903, 21 pages
http://dx.doi.org/10.1155/2013/396903
Research Article

LMI Approach to Exponential Stability and Almost Sure Exponential Stability for Stochastic Fuzzy Markovian-Jumping Cohen-Grossberg Neural Networks with Nonlinear -Laplace Diffusion

1Institution of Mathematics, Yibin University, Yibin, Sichuan 644007, China
2School of Science Mathematics, University of Electronic Science and Technology of China, Chengdu 610054, China
3College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China

Received 3 February 2013; Accepted 23 March 2013

Academic Editor: Qiankun Song

Copyright © 2013 Ruofeng Rao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The robust exponential stability of delayed fuzzy Markovian-jumping Cohen-Grossberg neural networks (CGNNs) with nonlinear -Laplace diffusion is studied. Fuzzy mathematical model brings a great difficulty in setting up LMI criteria for the stability, and stochastic functional differential equations model with nonlinear diffusion makes it harder. To study the stability of fuzzy CGNNs with diffusion, we have to construct a Lyapunov-Krasovskii functional in non-matrix form. But stochastic mathematical formulae are always described in matrix forms. By way of some variational methods in , Itô formula, Dynkin formula, the semi-martingale convergence theorem, Schur Complement Theorem, and LMI technique, the LMI-based criteria on the robust exponential stability and almost sure exponential robust stability are finally obtained, the feasibility of which can efficiently be computed and confirmed by computer MatLab LMI toolbox. It is worth mentioning that even corollaries of the main results of this paper improve some recent related existing results. Moreover, some numerical examples are presented to illustrate the effectiveness and less conservatism of the proposed method due to the significant improvement in the allowable upper bounds of time delays.