Copyright © 2010 T. Chinyoka and O. D. Makinde. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
This paper focuses on the transient analysis of nonlinear dispersion of a pollutant ejected by an external source into a laminar flow of an incompressible fluid in a channel. The influence of density variation with pollutant concentration is approximated according to the Boussinesq approximation, and the nonlinear governing equations of momentum and pollutant concentration are obtained. The problem is solved numerically using a semi-implicit finite difference method. Solutions are presented in graphical form and given in terms of fluid velocity, pollutant concentration, skin friction, and wall mass transfer rate for various parametric values. The model can be a useful tool for understanding the polluting situations of an improper discharge incident and evaluating the effects of decontaminating measures for the water body.