Copyright © 2011 Lei Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Feature extraction plays an important role in preprocessing procedure in dealing with small sample size problems. Considering the fact that LDA, LPP, and many other existing methods are confined to one case of the data set. To solve this problem, we propose an efficient method in this paper, named global between maximum and local within minimum. It not only considers the global structure of the data set, but also makes the best of the local geometry of the data set through dividing the data set into four domains. This method preserves relations of the nearest neighborhood, as well as demonstrates an excellent performance in classification. Superiority of the proposed method in this paper is manifested in many experiments on data visualization, face representative, and face recognition.