School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
Copyright © 2011 Hasibun Naher et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We construct the traveling wave solutions of the fifth-order Caudrey-Dodd-Gibbon (CDG) equation by the -expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, the trigonometric, and the rational functions. It is shown that the -expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations.