Copyright © 2011 Ahmad Fakharian. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Design of switching / output-feedback controller for discrete-time LTI systems with state-multiplicative noise is considered. The closed loop system achieves a minimum bound on the stochastic performance level, while satisfying the performance. The proposed controller is based on a fuzzy supervisor which manages the combination of two separate and controllers. A convex formulation of the two controllers leads to a structure which benefits from the advantages of both controllers to ensure a good performance in both the transient phase ( controller) and the steady phase ( controller). The stability analysis uses the Lyapunov technique, inspired from switching system theory, to prove that the closed loop system with the proposed controller structure remains globally stable despite the
configuration changing.