Electrical Engineering Department, Shahid Chamran University, Ahwaz 61357831351, Iran
Copyright © 2011 M. Baghdadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
This paper presents a comprehensive framework model of a distribution company with security and reliability considerations. A probabilistic wind farm, which is a renewable energy resource, is modeled in this work. The requirement energy of distribution company can be either provided by distribution company's own distributed generations or purchased from power market. Two reliability indices as well as DC load flow equations are also considered in order to satisfy reliability and security constraints, respectively. Since allocating proper spinning reserve improves reliability level, the amount of spinning reserve will be calculated iteratively. In this work, all equations are expressed in a linear fashion in which unit commitment formulation depends on binary variables associated with only on/off of units. The benders decomposition method is used to solve security-based unit commitment.