Copyright © 2012 Yuan-Ming Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The purpose of this paper is to give a numerical treatment for a class of nonlinear multipoint boundary value problems. The multipoint boundary condition under consideration includes various commonly discussed boundary conditions, such as the three- or four-point boundary condition. The problems are discretized by the fourth-order Numerov's method. The existence and uniqueness of the numerical solution are investigated by the method of upper and lower solutions. The convergence and the fourth-order accuracy of the method are proved. An accelerated monotone iterative algorithm with the quadratic rate of convergence is developed for solving the resulting nonlinear discrete problems. Some applications and numerical results are given to demonstrate the
high efficiency of the approach.