College of Information Science and Engineering, Shenyang Ligong University, Shenyang 110168, China
Academic Editor: J. Jiang
Copyright © 2012 Ye Xu and Zhuo Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
To evaluate how much two different complex topologies are similar to each other in a quantitative way is an essential procedure in large-scale topology researches and still remains an NP problem. Cross-correlation evaluation model (CCEM) together with Genetic Algorithm (GA) is introduced in this paper trying to solve this issue. Experiments have proved that SLS (Signless Laplacian Spectra) is capable of identifying a topology structure and CCEM is capable of distinguishing the differences between corresponding topology SLS eigenvectors. CCEM used in GA is recommended at last since a way of not finding the optimum solution in GA is a good way to reduce computing complexity.