Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 472457, 13 pages
http://dx.doi.org/10.1155/2012/472457
Research Article

Estimation of Soil Electrical Properties in a Multilayer Earth Model with Boundary Element Formulation

1Department of Civil and Structural Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
2Department of Electrical and Electronics Engineering, Faculty of Computer Science and Engineering, PSTU, Patuakhali 8602, Bangladesh
3Department of Electrical and Electronics & System Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

Received 19 May 2012; Revised 2 July 2012; Accepted 2 July 2012

Academic Editor: Alexander Pogromsky

Copyright © 2012 T. Islam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper presents an efficient model for estimation of soil electric resistivity with depth and layer thickness in a multilayer earth structure. This model is the improvement of conventional two-layer earth model including Wenner resistivity formulations with boundary conditions. Two-layer soil model shows the limitations in specific soil characterizations of different layers with the interrelationships between soil apparent electrical resistivity (ρ) and several soil physical or chemical properties. In the multilayer soil model, the soil resistivity and electric potential at any points in multilayer anisotropic soil medium are expressed according to the variation of electric field intensity for geotechnical investigations. For most soils with varying layers, multilayer soil resistivity profile is therefore more suitable to get soil type, bulk density of compacted soil and to detect anomalous materials in soil. A boundary element formulation is implemented to show the multilayer soil model with boundary conditions in soil resistivity estimations. Numerical results of soil resistivity ratio and potential differences for different layers are presented to illustrate the application, accuracy, and efficiency of the proposed model. The nobility of the research is obtaining multilayer soil characterizations through soil electric properties in near surface soil profile.