Academic Editor: Ben T. Nohara
Copyright © 2012 Juan F. San-Juan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The Hamiltonian formulation of the constant radial propulsive acceleration problem in nondimensional units reveals that the problem does not depend on any physical parameter. The qualitative description of the integrable flow is given in terms of the energy and the angular momentum, showing that the different regimes are the result of a bifurcation phenomenon. The solution via the Hamilton-Jacobi equation demonstrates that the elliptic integrals of the three kinds are intrinsic to the problem.