Copyright © 2012 Alireza Tavakholi Ghainani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
A model-based system for fault diagnosis in power system is presented in this paper. It is based on fuzzy timing Petri net (FTPN). The ordinary Petri net (PN) tool is used to model the protective components, relays, and circuit breakers. In addition, fuzzy timing is associated with places (token)/transition to handle the uncertain information of relays and circuits breakers. The received delay time information of relays and breakers is mapped to fuzzy timestamps, π(τ), as initial marking of the backward FTPN. The diagnosis process starts by marking the backward sub-FTPNs. The final marking is found by going through the firing sequence, σ, of each sub-FTPN and updating fuzzy timestamp in each state of σ. The final marking indicates the estimated fault section. This information is then in turn used in forward FTPN to evaluate the fault hypothesis. The FTPN will increase the speed of the inference engine because of the ability of Petri net to describe parallel processing, and the use of time-tag data will cause the inference procedure to be more accurate.