Copyright © 2012 Chen-Shu Wang and Ching-Ter Chang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Appropriate wireless access point deployment (APD) is essential for ensuring seamless user communication. Optimal APD enables good telecommunication quality, balanced capacity loading, and optimal deployment costs. APD is a typical NP-complex problem because improving wireless networking infrastructure has multiple objectives (MOs). This paper proposes a method that integrates a goal-programming-driven model (PM) and a genetic algorithm (GA) to resolve the MO-APD problem. The PM identifies the target deployment subject of four constraints: budget, coverage, capacity, and interference. The PM also calculates dynamic capacity requirements to replicate real wireless communication. Three experiments validate the feasibility of the PM. The results demonstrate the utility and stability of the proposed method. Decision makers can easily refer to the PM-identified target deployment before allocating APs.