Copyright © 2012 N. S. Viliani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Vibration analysis of a new type of compliant parallel mechanism with flexible intermediate links is investigated. The application of the Timoshenko beam theory to the mathematical modeling of the intermediate flexible link is described, and the equations of motion of the flexible links are obtained by using Lagrange’s equation of motion. The equations of motion are obtained in the form of a set of ordinary differential equations by using assumed mode method theory. The governing differential equations of motion are solved using perturbation method. The assumed mode shapes and frequencies are to be obtained based on clamped-clamped boundary conditions. Comparing perturbation method with Runge-Kutta-Fehlberg 4, 5th leads to highly accurate solutions, and the results are performed and discussed.